
International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014                                                                                   180 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

 

The Application of ANFIS-PSO trained in Signal 
Propagation Modeling for Indoor Wireless 

Communication Networks; A Review.  
Omae M. O, Ndungu E. N and Kibet P. L. 

 

Abstract- Recently there has been heightened interest on wireless communication networks which is evident in the introduction and 
use of mobile telephony starting with 1G, 2G, 3G and 4G and wireless LANs. For instance currently in almost every company we can 
see wireless routers installed in several locations to make access to information much better. The same case happens to mobile 
phone use which is expected to reach approximately eight billion subscribers by end of 2016. Studies are concentrated on outdoor 
and indoor propagation of signals where researchers look into proper planning and investigation of signal propagation modelling. 
Because of the high demand for wireless communication systems, there is need for the researchers to develop accurate propagation 
models in order to provide better quality of service to the users more so in the outdoor to indoor channels since it is believed that most 
communication presently and in the future is expected to originate from indoor locations.  
In these studies the current trend is that researchers are moving away from empirical and deterministic modelling to the use of 
computational intelligence that has several advantages which include but not limited to lower computational cost, high accuracy and 
faster convergence. 
This study is intended to develop an outdoor to indoor propagation model using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 
trained with Particle Swarm Optimization (PSO) algorithm, which aims to be really suitable for indoor propagation prediction. 
Also almost all of the path loss models being used at the moment by most mobile operators have not been developed using artificial 
intelligence methods. So there is need for developing a model that can be more accurate with buildings in urban setting like slums 
which are very common in third world countries. 
The model will be developed by first obtaining continuous wave (CW) measurements for given categories of buildings, analyzing them 
and then use PSO trained ANFIS. After the model is developed it will be compared with one of the most current models, radial basis 
function (RBF) neural networks trained with particle swarm optimization (PSO) algorithm where the expectation is that it will give 
better statistics and faster convergence. 
 
Keywords: wireless networks, artificial intelligence, ANFIS, PSO, propagation modeling. 
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I. INTRODUCTION 

An important consideration in successful implementation of 
the personal communication services (PCS) is indoor radio 
communication; i.e., transmission of voice, data and video to 
people on the move inside buildings. Indoor radio 
communication covers a wide variety of situations ranging 
from communication with individuals walking in residential or 
office buildings, supermarkets or shopping malls, etc., to fixed 
stations sending messages to robots in motion in assembly 
lines and factory environments of the future [1]. Network 
architecture for in-building communications is evolving where 
of late we have even wireless routers installed within 
buildings. 
In modeling indoor propagation the following parameters 
must be considered: construction materials (reinforced 
concrete, brick, metal, glass, etc.), types of interiors (rooms 
with or without windows, hallways with or without door, etc.), 
locations within a building (ground floor, nth floor, basement, 
etc.), the location of transmitter and receiver antennas (on the 
same floor, on different floors, etc.) and other considerations. 
An alternative approach to the field strength prediction in 
indoor environment is given by prediction models based on 

artificial neural networks. During last years, Artificial Neural 
Networks (ANN) have experienced a great development. 
ANN applications are already very numerous [2]. 
The few researchers who have looked at outdoor to indoor 
models [3], [4], [5], [6], [7], and [8] have not used fuzzy 
neural networks (FNN) to develop their models. Our approach 
will use fuzzy neural networks which has the following 
features;  exact analytical formula impossible; required 
accuracy around some percent; medium quantity of data to 
process; environment adaptation that allows them to learn 
from a changing environment and parallel structure that allows 
them to achieve high computation speed. All these 
characteristics of FNN’s make them suitable for predicting 
field strength in different environments. Besides traditionally, 
path-loss prediction models have been based on empirical 
and/or deterministic methods. Empirical models, such as the 
Bullington, Longley–Rice, Okumura, and Okumura–Hata 
(OH) models are computationally efficient but may not be 
very accurate since they do not explicitly account for specific 
propagation phenomena. On the other hand, deterministic 
models, such as those based on the geometrical theory of 
diffraction, integral equation, and parabolic equation can, 
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depending on the topographic database resolution and 
accuracy, be very accurate but lack in computational 
efficiency. Therefore, fuzzy neural networks (FNN) have been 
proposed to obtain prediction models that are more accurate 
than standard empirical models while being more 
computationally efficient than deterministic models. In recent 
years, ANNs have been shown to successfully perform path-
loss predictions in rural, suburban, urban, and indoor 
environments [29]. A drawback with multilayered feed-
forward networks that contain numerous neurons in each layer 
is the required training time [10]. Furthermore, an overly 
complex ANN may lead to data overfitting and, hence, 
generalization problems [11]. This can be made better using 
FNNs.  
A neuro-fuzzy system is a neural network that learns to 
classify data using fuzzy rules and fuzzy classifications (fuzzy 
sets). A neuro-fuzzy system has advantages over fuzzy 
systems and traditional neural networks: A traditional neural 
network is often described as being like a “black box,” in the 
sense that once it is trained, it is very hard to see why it gives 
a particular response to a set of inputs. This can be a 
disadvantage when neural networks are used in mission-
critical tasks where it is important to know why a component 
fails. 
Fuzzy systems and neuro-fuzzy systems do not have this 
disadvantage. Once a fuzzy system has been set up, it is very 
easy to see which rules fired and, thus, why it gave a particular 
answer to a set of inputs. Similarly, it is possible with a neuro-
fuzzy system to see which rules have been developed by the 
system, and these rules can be examined by experts to ensure 
that they correctly address the problem [9]. 
THE INCREASE in the popularity of wireless networks has 
led to the increased capacity demand. More and more users 
prefer wireless technology as compared to wired services. The 
wireless access broadly consists of two main technologies, the 
wireless cellular networks, which mainly provide voice 
services to users with high mobility and the wireless local area 
networks (WLANs), which provide higher data rates to users 
with comparatively restricted mobility. To replace the wired 
services, wireless networks need to provide high data rate 
services like the wired networks. Nowadays, the wireless 
cellular networks have evolved towards providing high data 
rate services to their users and thus, striving to replace the 
WLANs as well. 
With the passage of time, the demand for higher capacity and 
data rates is increasing. Cisco predicted a 39 fold increase in 
the data traffic from 2009 to 2014 [10]. A number of 
technologies and standards have been developed to cope with 
this increasing demand. The standards like 3 GPPs High 
Speed Packet Access (HSPA), Long Term Evolution (LTE) 
and LTE advanced, 3 GPP2s Evolution - Data Optimised 
(EVDO) and Ultra Wide Band (UWB) and Worldwide 
Interoperability for Microwave Access (WiMAX) have been 
developed to provide high speed communication to end users 
[11]. To achieve high data rates, signals with high Signal to 
Interference plus Noise Ratio (SINR) should be received, 
keeping in mind that transmitter should not cause significant 

interference to other users by transmitting high power signals. 
High data rates also require higher order modulation and 
coding schemes, which are currently used in the above 
mentioned standards. However, higher order modulation and 
coding schemes are more susceptible to noise in a given 
environment. On the other hand, capacity is generally 
increased by proving larger number of channels per area (cell). 
This is possible by reducing the area of each cell and thus 
increasing channel reuse. Classical approaches like Cell 
Splitting and Cell Sectoring are widely used in current 
wireless standards to increase system capacity [12]. 
Demand for cellular services can originate from indoors as 
well, that is why it is important for cellular networks to 
provide good quality coverage to indoor users as well. Study 
by ABI research shows that in the future, more than 50% of 
voice calls and more than 70% of data traffic is expected to 
originate from indoor users [13]. Another survey shows that 
30% of business and 45% of household users experience poor 
indoor coverage [14]. The new multimedia services and high 
data rate applications intensifies the need of good quality 
indoor coverage. Hence, providing good quality indoor voice 
and data services is of great importance. This would also be 
beneficial for the cellular operators in the form of increased 
revenue and reduced churn. 
Mobile cellular networks have gained reputation for poor 
indoor coverage resulting in inferior call quality, Quality of 
Service (QoS) issues becomes more predominant as mobile 
users begin using 3G services. Due to the penetration losses, 
the indoor user requires high power from the serving Base 
Station (BS), which means other users would have less power 
and as a result the overall system throughput is reduced. It is 
also very expensive to have a large number of outdoor BSs to 
meet the needs of a high capacity network. The large number 
of BSs would pose larger burden on network planning and 
optimization as well. The modulation and coding schemes for 
high data rates used in the standards mentioned above, require 
good channel conditions, which means that in the case of 
indoor coverage, QoS can’t be guaranteed due to the 
variations in channel conditions [15]. 
Using any kind of indoor solutions needs one to do a good and 
accurate prediction which will facilitate the process of 
determining which solution to apply in which particular 
situation. 
Although there are many possible directions for future work in 
radiowave prediction modeling area, [28] believe that 
measurement- based methods and rigorous (comparative) 
validation are most needed. Applications that make use of 
these models require an understanding of their real-world 
accuracy, and researchers need guidance in choosing amongst 
the many existing proposals. More work is needed to resolve 
the imbalance between the quantity of models proposed and 
the extent to which they have been validated in practice. 
Of all the models discussed below, [28] see two extremes in 
terms of information requirements. On one end of the 
spectrum are basic models, like the Hata model, that require 
very little information about the environment—simply the link 
geometry and some notion of the general environmental 
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category. At the other end are many - ray models which make 
use of vector data for obstacles to calculate specific 
interactions, requiring knowledge of the exact position and 
shape of all obstacles. In between these two extremes, there 
are very few models. Possible example includes The ITM and 
ITU-R 452 models, which make use of some additional 
information from public geographic datasets. A natural 
question then, is whether there is some other source of data 
available that could be used to inform better predictions, but is 
not as costly or difficult to obtain as detailed vector data. For 
instance: models that make use of high resolution satellite or 
the imagery and machine vision techniques, a high resolution 
Digital Surface Model (DSM) (where surface clutter is not 
“smoothed away” as it is in digital elevation /terrain models, 
“crowd sourced” building vector data vis a vis Google 
Sketchup, or topographic and zoning maps). So far, this data 
mining approach to prediction, although promising, has seen 
little rigorous investigation. 
There is simply no better way to generate truthful predictions 
than to start with ground-truth itself. For this reason, we 
believe that the future of wireless path loss prediction methods 
will be active measurement designs that attempt to extract 
information from directed measurements. In particular, 
geostatistical approaches that favor robust sampling designs 
and explicitly model the spatial structure of measurements are 
promising. General machine learning approaches, and active 
learning strategies may also be fruitful, but applying those 
methods to the domain of path loss modeling and coverage 
mapping is currently unexplored. Future work in this area is 
likely to focus on refining sampling and learning strategies 
using measurement based methods, as well as extracting as 
much information as possible from existing sources using data 
mining. Methods for parallelizing computation and 
preprocessing datasets are also needed to make predictions 
quickly (this is especially true when these models are used in 
real time applications). And, once predictions are made, 
efficient storage and querying of these spatial databases is an 
opportune area for further work. 
As the prevalence and importance of wireless networks 
continues to grow, so too will the need for better methods of 
modeling and measuring wireless signal propagation. In [28] 
they have given a broad overview of approaches to solving 
this problem proposed in the last 60 years. Most of this work 
has been dominated by models that extend on the basic 
electromagnetic principles of attenuation with theoretical and 
empirical corrections. More recently, work has focused on 
developing complex theoretical deterministic models. [28] 
believe the next generation of models will be data- centric, 
deriving insight from directed measurements and possibly 
using hybridized prediction techniques. Also the statistical 
analysis shows that a non-complex ANN model performs very 
well compared with traditional propagation models with 
regard to prediction accuracy, complexity, and prediction time 
[29]. Regardless of the approach that is taken, there is 
substantial possibility for future work in this area, with the 
promise of great impact in many crucial applications. It is 

hoped this study will address some of the problems currently 
facing outdoor to indoor radiowave propagation modeling. 
 

II. BACKGROUND 
A. INTRODUCTION  

Current indoor signal propagation modeling is a quite new and 
still rapidly developing discipline. It has become essential 
with the installation of WLAN and picocell mobile systems 
installation inside buildings. Many companies spent a great 
deal of their resources on satisfactory automating their indoor 
wireless system design supported by indoor propagation 
modelling and others. Most of them have simply adapted their 
outdoor prediction models on the basis of either an empirical 
or a deterministic approach. This has led to a variety of 
different models originally unsuited for application to indoor 
environments. These include COST231 One-Slope Model, 
Multi-Wall Model, Ray-Optical Models, Dominant Path 
Model, ParFlow Approach, Ray-Optical – Method of Moment 
Hybrid Model, Ray-Optical – Multi-Wall Hybrid Model.  
Outdoor models have been existent for some time now while 
outdoor to indoor and indoor to outdoor models are also a new 
concept. 
 

B. TRADITIONAL APPROACHES TO PATH-LOSS 
PREDICTION 

DETERMINISTIC MODELS  
A propagation model is called deterministic if it produces the 
same result for a given set of inputs. Every propagation 
scenario is subject to a random component (e.g. shadowing), 
which is described by these models in a predefined manner. 
For instance, the random shadowing behavior is predicted by 
deterministic models through a fine physical environment 
description. This leads to a very detailed propagation 
prediction which contains most propagation phenomena (e.g. 
diffractions, refractions, etc). For these predictions to be 
accurate, the properties of the environment such as the 
positions of the obstacles or their materials must be known. 
Such models provide usually high accuracy. The two main 
approaches, ray optical and finite difference are described 
next. 
 
Rician distribution 
Commonly used with small scale fading environments 
It is given by 

𝑃𝑟 = 𝑟
𝜎2
𝑒
�𝑟2+𝐴2�
2𝜎2 𝐼𝑜

𝐴𝑟
𝜎2

….…………………………………..(1) 
𝑟2

2
= Instanteneous power 

A=Amplitude of the power 
𝜎 − std deviation 
𝐼𝑜 − Bessel function of the first kind 
The e in the function represents a natural distribution.[2] 
 
Ray-Optical Models 
These models use ray optical (RO) laws to compute the 
reflections and diffractions of electromagnetic waves in the 
simulation environment. A usual approach of RO models is 
RT (Ray Tracing). RT searches for most possible rays 
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between an emitter and receiver. Then, the received power in a 
given location is computed as the sum of all the rays passing 
through it. RO models have been implemented in many 
commercial software products which can also be implemented 
in 3D. However, it is important to notice that the complexity 
of RT can be very high in scenarios where the number of 
obstacles is large, thus occurring numerous reflections [16], 
[17], [18], [19], [20]. 
As mentioned above, a mathematical description is not 
feasible in an indoor environment, due to its complexity and 
the requirement for an exact site-specific building structure 
description. To overcome the description complexity and 
separate out the main electromagnetic phenomena, some 
simplifications must therefore be applied. The basic 
simplification used by most present-day deterministic models 
is based on a wave approximation by ray-optic principles. This 
makes the wave description much easier, and, for example, 
only two cases of a ray impinging upon the obstacle can be 
discerned. The first case is the ray impinging upon a plane 
boundary when the Fresnel equations are used to calculate the 
ray specular reflection or direct ray transmission. In the 
second case, if the ray strikes just an obstacle edge the 
Uniform / Geometry Theory of Diffraction (UTD/GTD) is 
applied instead [20]. 
Use of the Fresnel equations is very straightforward, if the 
boundary is expected to be sufficiently large, plain, smooth 
and homogeneous (with respect to the wavelength), and if the 
two materials forming a boundary have known 
electromagnetic parameters. Otherwise, if any assumption 
cannot be satisfied, usually due to a more complex obstacle 
structure, the Fresnel equations should not be used. However, 
ordinary deterministic ray models used them. 
 

Ray-Tracing  
The ray-tracing algorithm determines all relevant rays for each 
receiver point independently of the other points by successive 
transmitter mirroring over the obstacles and obstacle visibility 
verification. The computation time increases in comparison to 
the ray-launching, but on the other hand constant resolution 
and accuracy can be obtained [19], [20]. 
The computation of the signal level is done through the 
GTD/UTD and Fresnel equations, as the ray-launching [21].   
 

Ray-Launching (Shooting)  
The ray launching algorithm launches rays in discrete angle 
increments from the transmitter and determines their path 
through a building. If there is an intersection between a ray 
and an obstacle, the specular reflection angle is computed and 
the penetrated and reflected rays are launched independently 
from each other. If the ray passes an edge, all rays on a 
diffraction cone must be considered. Therefore an angle 
increment is defined and a discrete number of rays are 
launched from the diffraction point. If the ray intersects a 
prediction plane, the signal level of this ray is added to the 
already computed signal level of a receiver point. Ray 
propagation is ended if the number of ray interactions is 

higher than a predefined number or if the signal level at the 
end of the ray is smaller than a predefined threshold [22], [23]. 
 
 
Finite difference models  
These models solve Maxwell’s equations on a discrete space-
time grid. The most common approach is the FDTD (Finite 
Difference Time Domain) model [19], [20] which has been 
widely used by the industry for the design of antennas and 
microwave circuits. 
The main advantage of FD (Finite Difference) models is their 
high accuracy due to the fact that, unlike RO models, the 
number of computable reflections is not bounded and 
diffractive effects are implicitly taken into account by its 
formulation. Therefore, FD models have also been applied for 
computing radio coverage of wireless systems. However, 
while FD models provide high accuracy, they also have the 
drawback of being very time and memory consuming. The 
main reason for this is that, when solving the Maxwell’s 
equations on a spatial grid, the special step has to be very 
small compared to the wavelength. Therefore, most of the 
previous works based on FD models are limited to the 2D case 
and rely on the use of particular architectures such as parallel 
computing or advanced graphic processing units (GPUs) [16], 
[17]. 
 
ParFlow Approach  
The original Parflow approach was proposed by Choppard et 
al. in the context of Global Positioning System (GSM) base 
station planning. This technique is a time-domain discreet 
approach, which accurately reflects the behaviour of wave 
propagation but in turn requires high computation and time 
resources. The new resolution scheme (Frequency Domain 
ParFlow) solves the discrete ParFlow equations in the Fourier 
domain. The problem can thus be solved in two steps, taking 
advantage of a multi-resolution approach to accelerate 
prediction.  
The time domain ParFlow approach simulates the field 
radiated by a source located somewhere on a 2D discrete grid. 
In this method the electrical field is divided into 5 components 
and the flows driven by the local transition matrices are 
derived from Maxwell’s equations. The algorithm is similar to 
the well-known transmission line matrix (TLM) proposed by 
[16]. 
 

Deterministic  Empirical  
Site specific (requires a 
detailed scenario 
description) 

Detailed scenario 
description not necessary  

Very accurate Less accurate 
High complexity, i.e. it 
does not scale well to 
large scenarios 

Very simple, i.e. well 
adapted to scenarios of any 
size 

Table 1  
EMPIRICAL MODELS  
Empirical models are capable of predicting the receivedpower 
in vaguely defined scenarios (i.e. scenarios in which the exact 
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location of obstacles is unknown). In general, such models are 
fitted formulas of measurements data, thus providing a general 
description of the channel behaviour in the environments 
where the measurements were taken. A currently popular 
implementation of an empirical model mobile coverage 
prediction is the Winner II, which gives typical pathloss 
parameters for 17 different scenarios such as indoor office or 
outdoor-to-indoor micro-cell. Empirical models usually 
predict the path-loss PL dependence with the distance and 
hence, only one path i s considered between emitter and 
receiver. The attenuation in decibels (dB) for dipole antennas 
is usually given by: 
 
𝑃𝐿𝑑𝐵(𝑑) = 10.𝛼. 𝑙𝑜𝑔10(𝑑) + 𝐶…………………(2) 
 
where α is the path loss exponent, d the distance in meters 
between receiver and emitter, and C a constant which depends 
on the scenario parameters such as the carrier frequency of the 
antenna type. The main advantage of empirical models is their 
simplicity, since their implementation is elementary as seen in 
Equation 1 and they do not require knowledge of the exact 
geometry of the environment. In Table 1, the main properties 
of both empirical and deterministic models are summarized 
[24]. 
 
Okumura Hata method 
This was developed by Okumura hata after performing several 
measurements with and the surrounding areas of Tokyo city in 
Japan.[2] 
The measurements were performed in different environments 
and then a formula developed to approximate or predict 
propagation loss in urban, suburban and rural setups 
The formula was developed for a median urban environment 
𝐿50 = 69.6 + 26.2𝑙𝑜𝑔𝑓𝑐 + (44.9− 6.6𝑙𝑜𝑔) log𝑑 −
13.8 log 𝑓𝑐….……………………………………....(2) 
Where 
𝑓𝑐 − Carrier frequency 
ℎ𝑏 − base station antenna height 
𝑑 − distance between antenna 
𝑎(ℎ𝑚)− Mobile antenna height correction function. 
For a suburban environment the L urban is modified as 
follows. 
 

𝐿50 = 𝐿50 − 2 �𝑙𝑜𝑔 �𝑓𝑐
28
�
2
− 5.4�….………………..(3) 

For a rural environment the urban model is modified as 
follows. 
𝐿50 = 𝐿50 − 4.98[𝑙𝑜𝑔𝑓𝑐]2 + 18.4(log 𝑓𝑐)−
40.94𝑑𝐵….………………………………………....(4) 
 
 
COST231 One-Slope Model  
Empirical models describe the signal level loss by empirical 
formulas with empirical parameters optimized by 
measurement campaigns in various buildings to make the 
empirical parameters of the model as universal as possible. 
The COST231 One-Slope model (OSM) is the simplest 

approach to signal loss prediction, because it is based only on 
the distance between the transmitter and the receiver. This 
simplest prediction model does not take into account the 
position of obstacles, the influence of which is respected only 
by the power decay factor (2). Factor n and the signal loss at a 
distance d0 from the transmitter L(d) in equation (5) increase 
for a more lossy environment, but they are constant for the 
whole building [25], [26], [27]. 
 

𝐿𝑂𝑆𝑀 = (𝑑0) + 𝑛10� 𝑑
𝑑0
� ……………………..……..(5) 

where: LOSM..............Predicted signal loss (dB)  
L0(d0)............Signal loss at distance d from transmitter (dB)   
n....................Power decay factor (-)   
d....................Distance between antennas (m)   
d0...................Reference distance between antennas (usually 1 
m) (m) 
 
Dual-Slope Model 
The path loss in dB is given by experimentally. 
 
𝐿𝑑𝐵 =
𝐿0,𝑑𝐵 +

�
10𝑛1𝑙𝑜𝑔10𝑑, 1𝑚 < 𝑑 ≤ 𝑑𝑏𝑝

10𝑛1𝑙𝑜𝑔10𝑑 + 10𝑛2𝑙𝑜𝑔10 �
𝑑
𝑑𝑏𝑝

� , 𝑑 > 𝑑𝑏𝑝
………………………………………………………...….(6) 
 
Basically, this model divides the distances into one line-of-
sight (LOS) and one obstructed LOS region. The break point 
distance dbp takes into account that in indoor environments the 
ellipsoidal Fresnel zone can be obstructed by the ceiling or the 
walls, anticipating the LOS region: 

𝑑𝑑𝑝 = 4ℎ𝑏ℎ𝑚
𝜆

…………………….……………....……..(7) 
 
where hb and hm denote the shortest distance from the ground 
or wall of the access point (AP) and station (STA), 
respectively [25]. 
 
Partitioned Model 
The path loss in dB is given by 
𝐿𝑑𝐵 =
𝐿0,𝑑𝐵 +

⎩
⎪
⎨

⎪
⎧

20𝑙𝑜𝑔10𝑑, 1𝑚 < 𝑑 ≤ 10𝑚
20 + 30𝑙𝑜𝑔10 �

𝑑
10
� , 10𝑚 < 𝑑 ≤ 20𝑚

29 + 60𝑙𝑜𝑔10 �
𝑑
20
� , 20𝑚 < 𝑑 ≤ 40𝑚

47 + 120𝑙𝑜𝑔10 �
𝑑
40
� , 𝑑 > 40𝑚

…...(8) 

 
This model uses pre-determined values for the path loss 
exponents and breakpoint distances, according to previous 
field measurement campaigns [25]. 
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Average Walls Model  
This model is based on the Cost-231 multi-wall except that the 
loss due to obstructing walls is aggregated in just one 
parameter L. Therefore, for a single floor environment, the 
path loss estimated by (5) is modified to 
 
𝐿𝑑𝐵 = 20𝑙𝑜𝑔10𝑑 + 𝑘𝑤𝐿𝑤………………….…….(9) 
 
where kw denotes the number of penetrated walls. In order to 
determine the parameter Lw, each wall obstructing the direct 
path between the receiver and the transmitter antennas must 
have its loss measured as follows. 
The loss of the first wall in dB is given by: 
 
𝐿1 = 𝐿 − 𝐿0,𝑑𝐵 − 20𝑙𝑜𝑔10𝑑…..………………...(10) 
 
Where L0,dB is the path loss obtained at 1 meter distant from 
the transmitter; L denotes the measured total loss from 1 meter 
distant after the obstructing wall.   For the second wall the loss 
of the first wall also must be taken into account. Therefore, the 
loss in dB of the second obstructing wall can be estimated as 
 
𝐿2 = 𝐿 − 𝐿0,𝑑𝐵 − 20𝑙𝑜𝑔10𝑑 − 𝐿1……………….(11) 
 
Keeping on the above methodology, the ith wall loss is given 
by 
 
𝐿𝑖 = 𝐿 − 𝐿0,𝑑𝐵 − 20𝑙𝑜𝑔10𝑑 − ∑ 𝐿𝑗𝑖=1

𝑗=1 ….……..(12) 
 
where the sum spans the losses of walls obtained previously. 
After all wall losses of the environment had been obtained, 
then the wall losses average value is computed and assigned to 
the parameter Lw [25]. 
 
Multi-Wall Model  
The OSM is insufficiently accurate for most applications, due 
to the usually inhomogeneous structure of building with long 
waveguiding corridors or large open spaces on one side and 
small complex rooms with many obstacles on the other side. 
For such cases, the more accurate, but still partly empirical, 
Multi Wall model (MWM) employing a site-specific building 
structure description can be used.  
The Multi-Wall model takes into account wall and floor 
penetration loss factors in addition to the free space loss (13). 
The transmission loss factors of the walls or floors passed by 
the straight-line joining the two antennas are cumulated into 
the total penetration loss LWalls (14) or L (15), respectively. 
Depending on the model, either homogenous wall or floor 
transmission loss factors or individual transmission loss 
factors can be used. The more detailed the description of the 
walls and floors, the better the prediction accuracy. The 
penetration losses are optimized as other empirical parameters 
from measurements, so they are not equal to the real obstacle 
transmission losses, but only correspond to the appropriate 
empirical attenuation factors of the obstacles. 

 
𝐿𝑀𝑊𝑀 = 𝐿1 + 20𝑙𝑜𝑔10(𝑑) + 𝐿𝑊𝑎𝑙𝑙𝑠 + 𝐿𝐹𝑙𝑜𝑜𝑟𝑠...(13) 
𝐿𝑊𝑎𝑙𝑙𝑠 = ∑ 𝑎𝑤𝑖𝑘𝑤𝑖

𝑙
𝑖=1 ……………………..…….…...(14) 

𝐿𝑊𝑎𝑙𝑙𝑠 = 𝑎𝑓𝑘𝑓……………………….……………...….(15) 
 
LMWM.........Predicted signal loss (dB)   
L1...............Free space loss at a distance of 1m from 
transmitter (dB) 
LWalls..........Contribution of walls to total signal loss (dB)   
LFloors.........Contribution of floors to total signal loss (dB)   
awi..............Transmission loss factor of one wall of i-th kind 
(dB)  
kwi...............Number of walls of i-th kind (-)   
I..................Number of wall kinds (-)   
af................Transmission loss factor of one floor (dB)  
kf…………Number of floors (-) 
 
Since the MWM considers the positions and specific 
transmission loss factor of walls, its results are more accurate 
than those of OSM. However, the shadowing effect of more 
closely adjacent walls are often overestimated, because their 
cumulated transmission loss factors lead to very small values 
of predicted signal level behind these elements. In other words 
the real signal may not follow a straight-line between 
antennas, but it can go around the walls. The computation time 
of the MWM is also quite short, and the sensitivity of the 
model to the accuracy of the description of the building is 
limited due to the simple consideration of only the number of 
obstacles passed by a straight line. 
 
Dominant Path Model  
The main ideas at the centre of the Dominant Path model 
(DPM) came from observations of traced rays, which 
frequently pass through similar rooms between a transmitter 
and a receiver. The relayed power is then propagating mainly 
through the same sequence of rooms. Such similarly 
propagating rays can therefore be grouped into a dominant 
path. The model then traces only the different dominant paths 
by means of a room constellation and their neighbourhood 
description by a preprocessed room oriented database. 
 
Ray-Optical – Method of Moment Hybrid Model  
The method presented in performs an electromagnetic 
simulation using a combination of the Method of Moment 
(MoM) and UTD. The MoM method requires the problem to 
be discretized using wire segments, often in the form of a wire 
grid, when the surfaces are modelled. Segment and grid sizes 
of around 0.1 wavelengths are required. The problem solution 
time is then proportional to the third power of the grid vertex 
number. Such time complexity thus limits the size of the 
problems that can by solved only by using MoM. A 
combination of MoM with UTD can provide suitable features 
for making a prediction within an indoor environment.   
UTD is an electromagnetic high-frequency approximation 
theory for solving problems where the elements making up 
problems are large in terms of the wavelength. The UTD 
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method complements the MoM method. Electrically large 
problems may be analysed using the UTD theory, whilst 
smaller problems may be analysed using MoM. 
The similar hybrid technique yielding the combination of Ray-
optical approach with Finite-Element Time Domain method 
(FDTD) is introduced in [17]. 
 
Ray-Optical – Multi-Wall Hybrid Model  
The limited number of ray interactions with obstacles in ray-
optical models leads to underestimated or totally unpredictable 
signal level in areas that are far from a transmitter. Signal 
prediction in such areas is much easier and above all faster by 
the Multi-Wall model. The transition between the two models 
should be smooth, so a suitable transition function is defined. 
The combination of the two models is a compromise between 
the accuracy of ray-optical models and the speed of empirical 
models. 
 

C. ARTIFICIAL NEURAL NETWORKS (ANNS) 
According to [2] indoor radio propagation is a very complex 
and difficult radio propagation environment because the 
shortest direct path between transmit and receive locations is 
usually blocked by walls, ceilings or other objects. Signals 
propagate along the corridors and other open areas, depending 
on the structure of the building. In modeling indoor 
propagation the following parameters must be considered: 
construction materials (reinforced concrete, brick, metal, 
glass, etc.), types of interiors (rooms with or without windows, 
hallways with or without door, etc.), locations within a 
building (ground floor, nth floor, basement, etc.) and the 
location of transmitter and receiver antennas (on the same 
floor, on different floors, etc.). An alternative approach to the 
field strength prediction in indoor environment is given by 
prediction models based on artificial neural networks. 
 During last years, Artificial Neural Networks (ANN) have 
experienced a great development. ANN applications are 
already very numerous. Although there are several types of 
ANN’s all of them share the following features: exact 
analytical formula impossible; required accuracy around some 
percent; medium quantity of data to process; environment 
adaptation that allows them to learn from a changing 
environment and parallel structure that allows them to achieve 
high computation speed. All these characteristics of ANN’s 
make them suitable for predicting field strength in different 
environments. The prediction of field strength can be 
described as the transformation of an input vector containing 
topographical and morphographical information (e.g. path 
profile) to the desired output value. The unknown 
transformation is a scalar function of many variables (several 
inputs and a single output), because a huge amount of input 
data has to be processed. Owing to the complexity of the 
influences of the natural environment, the transformation 
function cannot be given analytically. It is known only at 
discrete points where measurement data are available or in 
cases with clearly defined propagation conditions which allow 
applying simple rules like free space propagation, etc. 

The problem of predicting propagation loss between two 
points may be seen as a function of several inputs and a single 
output [2]. The inputs contain information about the 
transmitter and receiver locations, surrounding buildings, 
frequency, etc while the output gives the propagation loss for 
those inputs. From this point of view, research in propagation 
loss modeling consists in finding both the inputs and the 
function that best approximate the propagation loss. Given 
that ANN’s are capable of function approximation, they are 
useful for the propagation loss modeling. The feedforward 
neural networks are very well suited for prediction purposes 
because do not allow any feedback from the output (field 
strength or path loss) to the input (topographical and 
morphographical data).  
The presented studies develop a number of Multilayer 
Perceptron Neural Networks (MLP-NN) and Generalized 
Radial Basis Function Neural Networks (RBF-NN) based 
models trained on extended data set of propagation path loss 
measurements taken in an indoor environment. The 
performance of the neural network based models is evaluated 
by comparing their prediction error (µ), standard deviation (σ) 
and root mean square error (RMS) between their predicted 
values and measurements data. Also a comparison with the 
results obtained by applying an empirical model is done [2]. A 
drawback with multilayered feed-forward networks that 
contain numerous neurons in each layer is the required 
training time. Furthermore, an overly complex ANN may lead 
to data overfitting and, hence, generalization problems [29].  
 
THE ANN OVERVIEW 
Multilayer Perceptron Neural Network (MLP-NN)  
Figure 1 shows the configuration of a multilayer perceptron 
with one hidden layers and one output layer. The network 
shown here is fully interconnected.  

Y

WojWji
X0

X1

Xn-1

Input Layer Hidden Layer Output Layer

 Figure 1. Configuration of the MLP-NN 
 
This means that each neuron of a layer is connected to each 
neuron of the next layer so that only forward transmission 
through the network is possible, from the input layer to the 
output layer through the hidden layers. Two kinds of signals 
are identified in this network:  

 The function signals (also called input signals) 
that come in at the input of the network, 
propagate forward (neuron by neuron) through 
the network and reach the output end of the 
network as output signals;    

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 12, December-2014                                                                                   187 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

 

 The error signals that originate at the output 
neuron of the network and propagate backward 
(layer by layer) through the network. The output 
of the neural network is described by the 
following equation:  
 

𝑦 = 𝐹𝑜 �∑ 𝑊𝑜𝑗
𝑀
𝑗=0 �𝐹ℎ�∑ 𝑊𝑗𝑖𝑋𝑖𝑛

𝑖=0 ���…………….…….(16) 
where:  

 woj represents the synaptic weights from neuron 
j in the hidden layer to the single output neuron, 

 xi  represents the ith element of the input vector,    
 Fh and F0 are the activation function of the 

neurons from the hidden layer and output layer, 
respectively,   

 wji are the connection weights between the 
neurons of the hidden layer and the inputs.   

The learning phase of the network proceeds by adaptively 
adjusting the free parameters of the system based on the mean 
squared error E, described by equation (17), between predicted 
and measured path loss for a set of appropriately selected 
training examples:  
 
𝐸 = 1

2
∑ (𝑦𝑖 − 𝑑𝑖)2𝑚
𝑖=1 ………………………..….……...(17) 

 
Where yi is the output value calculated by the network and di 
represents the expected output. 
  When the error between network output and the desired 
output is minimized, the learning process is terminated and the 
network can be used in a testing phase with test vectors. At 
this stage, the neural network is described by the optimal 
weight configuration, which means that theoretically ensures 
the output error minimization.  
 
Generalized Radial Basis Function Neural Network (RBF-NN) 
The Generalized Radial Basis Function Neural Network 
(RBF-NN) is a neural network architecture that can solve any 
function approximation problem. 

Y

X0

X1

Xm

Input Layer

XM

1

k

K

i

Hidden Layer Output Layer

ϕ 1(x)

ϕ k(x)

ϕ K(x)

W1

W k
WK

 
Figure 2. RBF-NN architecture 

  
The learning process is equivalent to finding a surface in a 
multidimensional space that provides a best fit to the training 
data, with the criterion for the “best fit” being measured in 
some statistical sense. The generalization is equivalent to the 
use of this multidimensional surface to interpolate the test 
data. As it can be seen from Figure 2, the Generalized Radial 
Basis Function Neural Network (RBF–NN) consists of three 
layers of nodes with entirely different roles:  

 The input layer, where the inputs are applied,  
 The hidden layer, where a nonlinear transformation is 

applied on the data from the input space to the hidden 
space; in most applications the hidden space is of high 
dimensionality.  

 The linear output layer, where the outputs are produced 
The most popular choice for the function φ is multivariate 
Gaussian function with an appropriate mean and auto 
covariance matrix. 
The outputs of the hidden layer units are of the form  
 
𝜑𝑘[𝑋] = 𝑒𝑥𝑝[−(𝑋 − 𝑉𝑘𝑥)𝑇(𝑋 − 𝑉𝑘𝑥) (2𝜎2)⁄ ]…….….…(18) 
 
Where 𝑉𝑘𝑥  are the corresponding clusters for the inputs and 𝑉𝑘

𝑦 
are the corresponding clusters for the outputs obtained by 
applying a clustering technique of the input/output data that 
produces K cluster centres. The parameter σ controls the 
"width" of the radial basic function and is commonly referred 
to as the spread parameter. 
Vy

k is defined as  
 
𝑉𝑘
𝑦 = ∑ 𝑦(𝑝)𝑦(𝑝)∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘  ………………………….…..(19) 

 
The outputs of the hidden layer nodes are multiplied with 
appropriate interconnection weights to produce the output of 
the GRNN. The weight for the hidden node k (that is wk) is 
equal to  
 
𝑊𝑘 = 𝑉𝑘

𝑦 ∑ 𝑁𝑘𝑒𝑥𝑝 �−
𝑑(𝑥,𝑉𝑘

𝑥)2

2𝜎2
�𝑘

𝑘=1�  …………………….(20) 
 
𝑁𝑘is the number of input data in the cluster centre k, and  
 
𝑑(𝑋,𝑉𝑘𝑥) = (𝑋 − 𝑉𝑘𝑥)𝑇(𝑋 − 𝑉𝑘𝑥)   
   
With 
𝑉𝑘𝑥 = ∑ 𝑥(𝑝)𝑥(𝑝)∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘  ……………………….……..(21) 
 

III. PROPOSED METHOD 
A. Fuzzy inference systems and anfis 

Fuzzy Inference Systems 
This research will use fuzzy inference systems more 
specifically the ANFIS. As its name suggests, it is a system 
that uses fuzzy logic to perform different functions. It deals 
with different fuzzy concepts which include set theory, if-then 
rules and reasoning. This system can efficiently perform 
function approximation. Its basic structure, given in fig. 3 
below, consists of three components given as; a rule base, a 
knowledge base and a reasoning mechanism. The rule base 
contains fuzzy rules, the knowledge base that sets the 
membership functions used in the fuzzy rules and the 
reasoning mechanism that executes the inference process on 
the rules to give a reasonable output [30].  
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DeffuzzyficationInferencefuzzyfication

Knowledge base

outputinput

 
Figure 3. Fuzzy Inference System structure 

 
The different types of this system designed for function 
approximation that include Tsukamoto, Mamdani’s and 
Takagi Sugeno where in our study the Takagi Sugeno [32] 
system will be used due to its advantages that include high 
computational efficiency, good compatibility with linear, 
optimization and adaptive techniques and its suitability with 
mathematical analysis.     
Taking an input vector X =(x1, x2,...,xp)T the system output Y 
can be given by the Sugeno inference system as; 
 
RL: If (x1is FL

1, and x2 is FL
2,..., and xp is FL

p),  
Then (Y = YL= cL

0+cL
1x1+...+cL pxp). 

 
Here, FL

j is fuzzy set associated with the input xj in the Lth 
rule and YL is output due to rule RL (L=1,...,m.). The 
parameters used to define the membership functions for FL

j is 
called the premise parameters, and cL

i are called the 
consequence parameters. For a real-valued input vector 
X=(x1,x2,...,xp)T, the overall output of the Sugeno fuzzy 
inference systems a weighted average of the YL 

 

𝑌� = ∑ 𝑤𝐿𝑌𝐿𝑚
𝐿=1
∑ 𝑤𝐿𝑚
𝐿=1

………….…….………………..…….(22) 

 
 where the weight wl is the truth value of the 
proposition Y=YL and is defined as 
 
𝑤𝐿 = ∏ 𝜇𝑝

𝑖=1 𝐹𝑖𝐿(𝑥𝑗) ….…….…….…………..….(23) 
 
 And where µL

i F(xi) is a membership function 
defined on the fuzzy set FL

j. 
 
ANFIS 
Adaptive Neuro-Fuzzy Inference System (ANFIS) was first 
proposed by Jang in [30]. It is a combination of Fuzzy Logic 
(FL) and Artificial Neural Network (ANN) which captures the 
strengths and reduces the limitations of both techniques for 
building Inference Systems (IS) with better results and 
intelligence. Fuzzy logic deals with fuzzy set theory that 
relates to classes of objects with boundaries whose 
membership is a matter of degree. Fuzzy logic can also be 
seen as a platform that computes with words instead of 
numbers which is closer to human intuition and makes use of 
tolerance for imprecision, thus lowering the solution cost [33]. 
As discussed earlier Artificial Neural Networks consist of 
interconnected simple processing elements that operate 
simultaneously in parallel modeling the biological nervous 
system. Neural Networks are considered to be able to learn 
from input data by modifying the values of the connections 

referred to as weights between the elements. These two 
artificial intelligence concepts merged together offer the 
neural networks learning capability and the fuzzy logic 
knowledge representation that makes inferences from 
observations.   
 
Basic ANFIS Architecture  
The basic ANFIS architecture is as shown in figure 4. This is 
based on type 3 fuzzy inference system which uses the Takagi 
and Sugeno's (TKS) if-then rules [30] where the output of 
each rule is obtained by adding a constant term to the linear 
combination of the input variables with the final output 
calculated by taking the weighted average of each rule's 
output. This architecture has two inputs x and y and one 
output, z, as shown in the figure below. 
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N
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y
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W2
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Figure 4. Type 3 ANFIS Architecture. 

 
𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1 , 𝑡ℎ𝑒𝑛 𝑧1 =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 
𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧2 =  𝑝2𝑥 + 𝑞2𝑦+ 𝑟2  

The described ANFIS structure is the operational equivalent of 
a feed-forward, supervised neural network with a single input 
layer, three hidden layers and a single output layer. The 
functions of the different layers are as described below:  

 
Layer 1 (Fuzzy Layer): This layer consists of adaptive nodes 
that generate the membership grades of the input vectors. It is 
usually, a bell-shaped (Gaussian) function with maximum 
equal to 1 and minimum equal to 0 is used for implementing 
the node function: 
𝑂𝑖1 = 𝑓(𝑥, 𝑎,𝑏, 𝑐) = 𝜇𝐴𝑖(𝑥) = 1

1+|(𝑥−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
  ………...(24) 

𝜇 𝐴𝑖(𝑥) = exp {− ��𝑥−𝑐𝑖
𝑎𝑖
�
2
�
𝑏𝑖

}…………….……….…..(25) 
  
where 𝑂𝑖1  is the output of the 𝑖𝑡ℎ node in the input layer,  
𝜇𝐴𝑖(𝑥)  is the membership function of the input in the 
linguistic variable 𝐴𝑖. The parameter set {𝑎𝑖 , 𝑏𝑖 ,𝑐𝑖} define the 
shapes of the membership functions and are called premise 
parameters.   
 
Layer 2 (Product Layer): This layer consists of fixed nodes 
that are used to determine the firing strength of a rule. This is 
done by multiplying the membership functions associated with 
the rules where the output of a node i.e. firing strength of a 
particular rule is given by: 
 
𝑤𝑖 = 𝑂𝑖2 = 𝜇𝐴𝑖(𝑥).𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2…………………..(26) 
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any other T-norm operator that implements the fuzzy AND 
operation can be applied in this layer.  
 
Layer 3 (Normalized Layer): This layer has fixed nodes that 
are used to determine the ratio of the ith rule's firing strength to 
that of the total of all firing strengths: 
 
𝑤� = 𝑂𝑖3 = 𝑤𝑖

𝑤1+𝑤2
 , 𝑖 = 1, ..………………….………..(27)

  
The outputs of this layer are usually known as normalized 
firing strengths.  
 
Layer 4 (Defuzzify Layer): This is an adaptive layer that 
computes the contribution of each rule to the overall output. 
The nodes have the following function. 
𝑤𝚤���𝑧𝑖 = 𝑂𝑖4 = 𝑤𝚤���(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)………….………....(28) 
 
It is called a defuzzification layer and provides output values 
resulting from the inference of rules. The parameters in this 
layer {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} are referred to as consequent parameters.  
 
Layer 5 (Total Output Layer): This layer consists of a single 
fixed node that computes the overall output as the summation 
of contribution from each rule: 
 
∑ 𝑤𝚤���𝑧𝑖𝑖 = 𝑂𝑖5 = ∑ 𝑤𝑖𝑧𝑖

∑ 𝑧𝑖𝑖
𝑖 ……………………….……..(29) 

B. LEARNING ALGORITHMS 
The development of the ANFIS concept, has seen the proposal 
of several learning methods to facilitate the process of 
obtaining optimal set of rules. They include a merge between 
Min-Max and ANFIS proposed by Mascioli et al and 
nonlinear least square by Lavenberg-Marquardt [32].  
Four methods used to update the ANFIS structure parameters 
introduced by Jang [30] are as given below according to their 
level of computation complexities:  

1. Gradient descent (GD) only- used to update all the 
parameters.  

2. Gradient descent only and one pass of least square 
estimator (LSE)- the gradient descent takes over to 
update all parameters after the LSE is first applied 
only once at the beginning to obtain the initial values 
of the consequent parameters.  

3. Gradient descent only and LSE- this is a hybrid 
learning.  

4. Sequential LSE-updates all the parameters using 
extended Kalman filter.  

All these methods have limitations of high complexity and 
slow converge. In this research we will use, particle swarm 
optimization (PSO), a method which has less complexity and 
fast convergence [32]. 
 

C. PARTICLE SWARM OPTIMIZATION (PSO) 
Particle Swarm Optimization is a global optimization 
technique developed by Eberhart and Kennedy in 1995 [31], 

where the underlying motivation of its algorithm was the 
social behavior observable in nature, such as flocks of birds 
and schools of fish in order to model swarms of particles 
moving towards the most promising regions of the search 
space. It exhibits good performance in finding solutions to 
static optimization problems where it is considered to be better 
than other algorithms like Genetic Algorithm [34]. Apart from 
this it also exploits a population of individuals to 
synchronously probe promising regions of the search space. In 
this case, the population is referred to as a swarm and the 
individuals (i.e. the search points) to as particles. The 
consideration here is that each particle in the swarm represents 
a candidate solution to the optimization problem. For a PSO 
system, every particle moves with an adjustable velocity 
through the search space, where it adjusts its position in the 
search space according to its own experience and that of 
neighboring particles. After this it retains a memory of the 
best position it ever encountered. A particle therefore makes 
use of the best position encountered by itself and the best 
position of neighbors to position itself towards the global 
minimum. This therefore results to particles “flying” towards 
the global minimum, while still searching a wide area around 
the best solution [32]. Each particle’s performance (i.e. the 
“closeness” of a particle to the global minimum) is measured 
according to a predefined fitness function which is related to 
the problem being solved. For our case, a particle represents 
the weight vector of NNs, including biases. The total number 
of weights and biases give the dimension of the search space 
[33]. 

The iterative approach of PSO can be described as in the 
following steps: 

• Step 1: Initialize a population size, positions and 
velocities of agents, and the number of weights and 
biases. 

• Step 2: The current best fitness achieved by particle 
p is set as pbest. The pbest with best value is set as 
gbest and this value is stored. 

• Step 3: Evaluate the desired optimization fitness 
function 𝑓𝑝 for each particle as the Mean Square 
Error (MSE) over a given data set. 

• Step 4: Compare the evaluated fitness value 𝑓𝑝 of 
each particle with its pbest value. If 𝑓𝑝< pbest then 
pbest = 𝑓𝑝  and bestxp=  𝑥𝑝 ,  𝑥𝑝  is the current 
coordinates of particle p, and bestxp is the 
coordinates corresponding to particle p’s best fitness 
so far. 

• Step 5: The objective function value is calculated for 
new positions of each particle. If a better position is 
achieved by an agent, pbest value is replaced by the 
current value. As in Step 1, gbest value is selected 
among pbest values. If the new gbest value is better 
than previous gbest value, the gbest value is replaced 
by the current gbest value and this value is stored. 
If 𝑓𝑝< gbest then gbest = p, where gbest is the particle 
having the overall best fitness over all particles in the 
swarm. 
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• Step 6: Change the velocity and location of the 
particle according to Equations 27 and 28, 
respectively. 

• Step 7: Fly each particle p according to Equation 26.  
• Step 8: If the maximum number of predetermined 

iterations (epochs) is exceeded, then stop; otherwise 
Loop to step 3 until convergence.  
 
𝑉𝑖 = 𝑤𝑉𝑖−1 + 𝑎𝑐𝑐 ∗ 𝑟𝑎𝑛𝑑() ∗ �𝑏𝑒𝑠𝑡𝑥𝑝 − 𝑥𝑝� 

                            +𝑎𝑐𝑐 ∗ 𝑟𝑎𝑛𝑑() ∗ �𝑏𝑒𝑠𝑡𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑝�….(30) 
 

Where acc is the acceleration constant that controls how far 
particles fly from one another, and rand returns a uniform 
random number between 0 and 1. 
 

𝑥𝑝 = 𝑥𝑝𝑝 + 𝑉𝑖……………………..…….(31) 
      

𝑉𝑖  is the current velocity, 𝑉𝑖−1  is the previous velocity, 𝑥𝑝 is 
the present location of the particle, 𝑥𝑝𝑝  is the previous 
location of the particle, and i is the particle index. In step 5 the 
coordinates best 𝑥𝑝  and bestxgbest are used to pull the 
particles towards the global minimum [32]. 
 

D. EVALUATION CRITERIA 
The performance of the proposed approach will be evaluated 
by measuring the estimation accuracy. The estimation 
accuracy can be defined as the difference between the actual 
and estimated values. The first typical fitting criterion (MSE) 
is defined as in Equation 28: 
 
𝑀𝑆𝐸 = 1

𝑁
∑ (𝑦𝑖 − 𝑦𝚤�)2𝑁
𝑖=1 ……………………………..(32) 

 
where N is the total number of data, y is actual target value, 
and 𝑦� its estimated target value. 
The experiments will be implemented many times to ensure 
that MSE converges to a minimum value. 
The initial values for weights will randomly be assigned 
within the range [-1; 1]. The training accuracy is expressed in 
terms of the mean absolute error, standard deviation (SD) and 
root mean squared error (RMSE). The absolute mean error 
(ME) is expressed as 
 
𝑒𝑖 = |𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|, 

𝑒̅ = 1
𝑁
∑ 𝑒𝑖𝑁
𝑖=1 ,……………………………………(33) 

 
where terms measured and simulated denote received signal 
strength that are obtained by measurement and simulated by 
ANFIS, while N is total number of samples. Standard 
deviation is given by 
 

𝜎 = � 1
𝑁−1

(𝑒𝑖 − 𝑒̅)2 ………………………….(34)

      
The root mean squared error (RMSE) is calculated according 
to the expression 

 
𝑅𝑀𝑆𝐸 = √𝜎2 + 𝑒̅2…………………………………(35) 
 

E. IDENTIFY BUILDINGS  
We will survey 4 categories of buildings for each category 
taking five buildings 
Category 1 
Buildings with concrete walls and a few glasses  
Category 2 
Buildings with glass walls and a few concrete walls 
Category 3 
Buildings with iron sheet walls (slums) 
Category 4 
Lifts and Tunnels 
Category 5 
Wooden partitions 
 
CW Measurements  
For this clean unused frequency will be identified. 
Perform the actual CW measurements after identification of 
the receiver antenna position at different points of one floor, 
different floors and the surrounding building environment. 
Vary the transmitter antenna heights as the measurements are 
done same floor and different floors. 
Vary different partitions concrete, wood and iron sheets and 
also their number. 
Vary the antenna distance from the buildings. 
In this study, the measurement equipment will consist of a 
transmitter and a receiver. The narrow band continuous wave 
(CW) transmitter, which can be tuned to a specific test 
frequency, will be used together with an antenna. 
For the purpose of measurement, a narrow band CW channel 
will be used. This will ensure good frequency isolation and 
constant signal to avoid interference. The frequency chosen 
will be in the unused frequency band not used by GSM 
operators or anyone else.  
 

F. EXPERIMENTAL SETUP 
TRANSMITTER RECEIVER

 

Figure 5. Schematic diagram of Bistatic System 

 
G. STATISTICAL ANALYSIS 

Analyse the impact of different partitions, their number, 
antenna positioning, different floors, inside a lift, effect of 
other surrounding buildings. The main idea of the statistical 
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analyses (using SPSS) will be to understand the radio wave 
propagation behavior at the measurement frequency. 

H. DEVELOPMENT OF AN INDOOR PROPAGATION 
MODEL 

The neuro fuzzy system with the learning capability of neural 
network and with the advantages of the rule-base fuzzy system 
can improve the performance significantly and can provide a 
mechanism to incorporate past observations into the 
classification process. In neural network the training 
essentially builds the system. However, using a neuro fuzzy 
scheme, the system is built by fuzzy logic definitions and is 
then refined using neural network training algorithms.   
Some advantages of ANFIS are:  
• Refines fuzzy if-then rules to describe the behaviour of a 

complex system.   
• It uses membership functions and desired dataset to 

approximate. 
• Greater choice of membership functions to use.     
• Very fast convergence time. 
• Minimized errors. 
As indicated above ANFIS will be used to develop the indoor 
propagation model with PSO training. 

 

I. SIMULATION AND TESTING THE MODEL  
The model will be simulated using MATLAB and the test 
done on Atoll or IB-wave. 

 
J. COMPARISON OF THE MODEL WITH RBF-NN-

PSO TRAINED MODEL. 
The evaluation measurements will be done on similar 
buildings to compare the accuracy of the developed model as 
well as compare its accuracy with radial basis function (RBF) 
neural network model trained with particle swarm 
optimization (PSO) algorithm which according to [35] has 
results represented in Table 2 and Figure 6. 
 

Table 2: Results for RBF-PSO trained model 
 Absolute 

mean error 
[dB] 

Standard 
deviation 
[dB] 

RMS error 
[dB] 

RBF-PSO 1.847 1.270 2.245 
 

 
 
 

Figure 6: Simulated results obtained by RBF-PSO 
training algorithm 

 
K. EXPECTED RESULTS 

The predictions from the algorithm based on PSO trained 
ANFIS, and the predictions from radial basis function (RBF) 
neural network model will be compared with the error 
criterion expressed in equations (28)-(31). According to the 
indicated error criterion, the errors obtained from our 
algorithm will be expected to be less than the errors obtained 
from the other Models such as in terms MSE, RMSE, SD and 
ME. Another important expectation is that the proposed model 
will result to faster convergence that is less computing time. 
This is because of its environmental adaptation that allows it 
to learn from a changing environment and parallel structure 
that allows it to achieve high computation speed. 
 
 

IV. CONLUSION 
A review of existing data has identified a need to more closely 
examine the indoor radiowave propagation prediction. This 
paper outlines a proposed study to critically assess current 
limitations underlying radiowave propagation prediction 
modeling and research and postulates potential issues and 
implications for this work.  Expected outcome of this study is 
a more efficient and accurate model for predicting outdoor to 
indoor radiowave propagation. 
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